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, ON LIMITING ODSTRIBEIONS OF.,NTERDIAT
--. STATISTICS FROM STATIONARY SEQUENCES-

_______ by

k VernonjWatts Holger/ Rootze'n iM.R.Leadbetter

4 , ... ....'-- - ,-. --

Abstract y J f 2--
" -------- -XI X be a sequence of random variables and write XIn, for

1'2- k

the kth largest among X1 , X2,...Xn . If {k } is a sequence of

integers such that kn -*o k /n O, the sequence {X (n)} is referred to
n nas the sequence of intermediate order statistics corresponding to the

intermediate rank sequence {k n}.

The possible limiting distributions for X (n) have been characterized
knn

(under mild restrictions) by various authors when the random variables

xIx 2... are independent and identically distributed. In this paper we

consider the case when the {X n } form a stationary sequence and obtain a

natural dependence restriction under which the "classical" limits still

apply.

It is shown in particular that the general dependence restriction

applies to normal sequences when the covariance sequence {r n } converges

to zero as fast as an appropriate power n-p as n - co.

Key Words and Phrases: order statistics, stationary processes, ranks,

intermediate ranks.
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1. Introduction.

-The problem of finding the asymptotic distribution of the maximum

term from a stationary dependent sequence of random variables (r.v.'s)

has been extensively investigated in the literature. Of particular

interest are the cases in which the concept of "approximate independence"

is formulated mathematically in terms of conditions such as "strong

mixing" or, for normal sequences, conditions on the rate of decay of the

covariances. Loynes (1965) showed that under strong mixing and an

additional restriction, the (suitably normalized) maximum of a dependent

sequence has the same limiting distribution as the maximum of a corresponding

independent and! identically distributed (i.i.d.) sequence, provided the

latter sequencS has a limiting distribution. This limiting distribution

is thus necessarily one of the three classical types of extreme value

limit laws. For stationary normal sequences Berman (1964) found

covariance conditions under which the distribution of the maximum

converges to the double-exponential limit law, which arises in the i.i.d.

normal case. More recently, Leadbetter (1974) obtained the general

result of Loynes under a weaker "distributional mixing" assumption and

showed that with Berman's covariance conditions the normal case may be

plated into the general framework. Additionally, Leadbetter considered

the related high-level exceedance problem for stationary sequences,

leading to corresponding limiting results for extreme order statistics.

>Our objective in this paper is to obtain analogous results for

so-called intermediate order statistics. Specifically, for a given

4 sequence of r.v.'s {X 1, let X n ) denote the kth largest of Xl, ... Xn,
n k

and let {kn } be integers such that 1 5 k ! n\ for each n. Then ifn n

* 4.
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k n but k /n / 0, {n} is called a sequenceof intermediate order
nn nstatistics and -- intermediate rank sequene. Wu (1966) found

n
that, subject to the mild restriction that kn increas monotonically,

when the {X n } are i.i.d. the only possible nondegene ate limit laws for

the normalized sequence {an(X(n)bn)} are normal and ognormal. In
n

Section 2 we will establish general conditions under whi the intermediate

order statistic X~n) from a stationary dependent sequence -- } has the
n

same asymptotic distribution as it would if the {X n } were i.i.d. These

conditions parallel those used to obtain the corresponding result in the

extreme order statistic problem, a primary difference being that certain

more rapid "mixing" rates have to be assumed. Using our procedure it is

convenient to deal directly with an appropriate level exceedance problem

and to regard that of asymptotic distributions as a specialization. In

Section 3 we show that under a certain decay of the covariance funyti n

our general conditions are satisfied by a stationary normal sequence

{X n}; in this instance it is known (see Cheng (1965)) that the asymptotic
(n

distribution of X k for an independent sequence is itself normal and
n

hence is also normal in the dependent situation considered.

I

2. The general stationary case.

First suppose that {X n } is an i.i.d. sequence of r.v.'s with

marginal distribution function (d.f.) F(x) = P(X1 x) and that {k n  is

an intermediate rank sequence. Let {u } be real numbers, write
nn

Sn = .Ij where Ini is the indicator of the event {X 1 un), i.e. LI
l,' i=l [

I 1 if X. > un and I. - 0 otherwise, so that Sn is the number _
*n,1 1 n,i

of exceedances of the level un by XI ... IXnJ and let 0 be the standard

.'.illbilty Codes

I Avnii and/or-
:),5t )special
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normal distribution function. It follows from the Berry-Esseen theorem

and the basic equality

PcXn)<un) = P(Sn<kn)
n

that

(2.1) P(X Un) (u) as n
n

if and only if

(2.2) 1 F(u) = kn/n - u/k-/n + o(/n/n)

> 0)suchthata ~(n)_
Thus, there are constants a n bn (an > 0) such that an(Xkn-b n  has a

n n

limiting distribution if and only if there exists a function u(x) such

that, writing u n(x) = xfan + bn,

(2.3) 1 - F(U (x)) = kn/n - u(x)/Fn/n + o(-7n/n)

for all continuity points of 4(u(x)), and furthermore if (2.3) holds then

P(a (X(n ) -b )x) -. '(u(x)) as n +

n k n
In

for all continuity points of 4(u(x)). Wu (1966) proved that if {k } is
n

nondecreasing then the only possibilities for u(x) are

(i) u(x) = -a log lxi , x < 0 (a > 0)

u(x) = , x a 0

(ii) u(x)= .. x0

u(x)= a log x , x > 0 (a > O)5'

I
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(iii) u(x)= x

(iv) functions obtained by replacing x by ax~b (a > 0) in

(i), (ii), or (iii).

It may be noted that if for example F is continuous then for any real u

it is possible to choose levels un satisfying (2.2), and hence such that

(2.1) holds, but of course these levels may not necessarily constitute a

family un(x) = x/an + bn which satisfies (2.3) for some function u(x).

Our approach to proving that, say, (2.1) holds for a stationary

dependent sequence {X n} is to assume that (2.2) holds and then to use a

dependent central limit theorem to prove that

P(Sn<k n ) n ¢(u) as n -

and thus that (2.1) holds. Since (2.1) and (2.2) are equivalent for

independent sequences, the assumption (2.2) can alternatively be stated

A (n) th
as P( nun) + $(u) where Xn) is the kn order statistic in the

n n A A

"associated independent sequence" XI,X 2, .... that is, an i.i.d. sequence

which has the same marginal d.f. F as each X . For easy reference we
start by stating two known results from dependent central limit theory.

The first one is Lemma 5.2 of Dvoretzky (1972), while the second one

' "follows for example from Theorem 2.3 of Durrett and Resnick (1978).

Lemma 2.1. Let X be an r.v. on (9,A,P), wzrite a(X) for the a-fieZd

generated by X, Zet B be a ub-o-field of A and define

cc - sup{IP(AB) - P(A)P(B)I Aca(X) , BB.

If JXI J 1 then

*.P 4
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EIE(XIB) - E(X)l S 4a.

N
Lemm~a 2.2. For n a 1 let {X }ii be r.v .'s on the probability spaceLe~a 22. or le {n,i 1

(Q,B,P) and let {C n,i } be sub-c-fields of 5 such that X n i is

Cn i-measurable. Suppose further that c C. and that

E(X n,ilIC n,i) = 0 for 1 s i < N. .If Ix n,i 1 ! n I -< i N , for

some constants e n 0, and if

Nn 2 Pnil p2
(2.4) 1 E(X 2 - as n-

i=2 ,

for some constant a 0, then

N
n

P( X . x)- 4(x/o) as ni=1 ,

for all real x, where D(x/0) is defined to be 1 for x ; 0 and 0 for

x< 0.

To be able to give conditions restricting the dependence in the

sequence {Xn I it is useful to introduce certain "mixing coefficients."

Let 8n,k = (In,l, .... n,k) be the a-field generated by In,l, ..,In,k;

define

LI (n,k) = sup{IP({Xn+is un} n B) - P(Xn+i < un)P(B)I; izO BCB a"},

C 2(n,k) = sup{IP({X n+iu X <Su n B) - P(X n+i n X n+jsun)P(B)l;

i, j >0, ni- j B e8n

• I
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and put

a?(n,k) =max{a 1 (n,k) a c2 (n,k)}

It is easily checked (by simply listing the events of ci(I n , I .~))

that

4cx(n,k) 2: sup{IP(AnB) - P(A)P(B)f; A c ca(In i In~ lnn+j

for some i,j2:O, Ii-jI:k, BeB n ,n-k

our main dependence condition, to be called A(un ), depends on the levels

u and involves sequences U ,Jl of integers which of course may be

chosen to be different for different sequences fu n.

Condition A(u n) will be said to hold if

F L IP(X >un , X >u ) - -'u 0 as nkn i~l 1 l +i n)

and if furthermore there exist sequences f9. I and f{. } of integersn n

n n (F

nn
n~ a (n, 0 and ct(n ,9.V) -~ 0 as n -

n n

The mixing condition in A~u n) differs from the strong mixing

condition which uses the mixing coefficient

a(n,k) =sup{IP(AB) -P(A)P(B)I; Aca(X n'X n+l .... JBea(Xl..-DX n-k)}
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in that substantially fewer events are involved. However, for a strongly

mixing sequence, clearly a(n,k) a a(n,k') if k f k', and hence the

second part of A(Un) follows if

aC(n,') - 0 as n
vrk n

n

However this condition may be harder to check; in particular this seems

to be the case when {X } is normal.

n

To state the next lemma, which contains the major part of the proof

of (2.1) for dependent sequences, we need some further notation. We

partition the first n integers into long and short "intervals"

JiJJJ P...,J , with J,JP .... N of alternating lengths
11' 2'2' 'N wt l l' N

n'n.... .,n and with J' of length r < 9£ + £'. Clearlyn nN n n
n

(2.5) N n n/Zn

Further, define C 0(1 C;j E U Jk) and C',. =a(I n j e u
an ptn,i n,j k n i n~J klk=l k I

, and put

X = J {In,j E(In,j cn,i-l /fk n

and

X, II , n,j - (In ,
n,1 j njCn,i-l)

for 2:<i:5N
,* n
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Lemma 2.3. Suppose that the stationary sequence {X } satisfies A(u n).

Then

N

(2.6) j jE(In,j I n,) E(I nj)E(I n,k)I/k n 0
i=2 j,kEJ. nn

and

Nn L

(2.7) 1 Y {E(I In_) E(In.))/F'- 0
i=2 jeJ nj ni-l nj n

1

as n , and (2.6) and (2.7) hold also when J. is replaced by J' and11

Cn. by C' If in addition (2.2) holds thenn,1 n ,"

Nn L

. E(Xn ilCn,i
i=2

(2.8)

n L
i E(X'.IC' - 0

i=2 nl ni-l

as n c.

Proof. Since E(I ) = 1-F(u) and E(I I P(X.>u X >u

nj n n,j n,k )  n' k n
it follows by stationarity that

N
n
I:2 IJE(I J I*n ' k - E(In.j)E(In k)I/kn

i=2 jk EJ

4 ,
:5" s Nn~ n Z P(Xl>U n  Xl+i>u (l-F(Un))21/k ninn
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which tends to zero as n + by A(u n since N n. Zk n n/k n This

proves (2.6).

Next by Lemma 2. 1 and stationarity we have for j e J.i that

-J(I 1 E(I *)1 -- 4a (n £') !s 4a(n,Z2)
nj n,i-1 Ij fln

and hence by A(u ) that

N
n

X EJE(I *C. 1  E(In ) /Yj -n N nZ a n n[
i2jEJ. n n -n,j n3// n 4n n

Knc(n,ZA/k

-0 as n -

and (2.7) follows.

To prove the first part of (2.8) we note that

2
(2.9) E(X n , iCn,i-1) j~E.{E(I nj I nk 1C nii)- E(I nj1C n*i 1)

Reasoning as above, we have

N
n

(2.10) Z I EIE(In I 1Cn.i- E(In I )1/kn
i=2 j,kEcJ n3nk ni1n .

2-
16N n. k n (n,kZ')/kn

-0 as n -

7P.



and furthermore, since 11 nj1 :5 1,

EIE(I nj ICfil )E(I nkIC n~.- E(I nk)E(I nj)I

=EI{E(I~ IC )-E(I .)}E(I kICni)njn'i-l j kni-

+ E(I .){EI I (

EIE(I njIC )i-l E(I *j)I + EIECI nk ICn Di..l~ E(Ink)I

!5 8ax1(n,i')

and thus it follows similarly that

N
n

(2.11) Z EIE(I *ICni.E(I IC 1 - n(I )E n,k )Ikn
i=2 j k EJ. ~

-0 as n -

Further, by (2.6), (2.5), and (2.2),

n
S {E(I .1j nk)E(I .j )E(Ink ))/kn

* 1=2 j~~~kkJ. njf ~ n J~

N

n 2

,-2 jEJ. ni ~

Nn

+ I {E(I njI ) - E(I nj)E (I n)}/kn
j= jk EJ. njnknj n n

(N - )k {(l-F(u) (l-F(u )) 2}/k~ + 00l)

~1 as n+

and together with (2.9) - (2.11) this proves (2.8).
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Finally, the proofs of the remaining assertions of the lemma are

similar and are left to the reader. 0

Our main results now follow easily.

Theorem 2.4. Let {X I be a stationary sequence of r.v. 'a, let {k } ben n

an intermediate rank sequence, and let S be the number of exceedancesn

of un by X1 .... ,X n . If (2.2) and A(un) hold then

P((S - E(S ))/V i x) P 4(x) as n -
n n n

for all real x, and therefore

P(X (n) U P(S <kn) - ¢(u) as n -k n nn nn

Proof. Since II - E(In ICn 1 )I 2 we have that

nj ~n,j i-

IXn,iI 1- 2Zn/nHTn - 0, and it follows at once from (2.8) and the

definition of {X } that the conditions of Lemma 2.2 are satisfiedn,i

2
(with a = 1), and hence that

N n d
Y X . - as n-

i=2

Similarly it follows that

N
n dSV. - 0 as n

i--I n,i

" Together with Lemma 2.3 this implies that

.. . . . . . . . ...D

.1 p

I I IKi ... .I IiI
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N N
n n

(S -E(S))/ n = (I -EI )/ n + I X + I Xin n n jeJlUJI (n~j n~j n i2n,i iQ 1

N
n
n {E(In .IC E(In )}/r n

Si=2 jJ n ni-in
i-

N 

.-i=2 jEJ" nj (Inl nn

d
4 as n -

and thus proves the first part of the theorem.

Next by (2.2)

(k n - E ( S n l k n = (k n -n( l - F(un)))/ n

, u as n ,

and, writing

P(S n<k n) = P((Sn-E(Sn))/In < (kn - E(Sn ))// n ) n

the last part of the theorem follows at once since D is continuous. 0

* Using this result we obtain the following theorem, giving sufficient

conditions for X k to have an asymptotic distribution, which is the

same as if the X Is were i.i.d.

Theorem 2.5. Let {X n  be stationary and suppose that for some constants

a n > 0 , bn

,. P(an(X n)_ bn)x) 0 (u(x)) as n
n

az>%b

P"( t-)x)- (ux)a'n-

K : _ _ _ _ _ _ _......
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for all continuity points x of u where {An)} is the independent
n

sequence associated with {X }. If A(un) is satisfied for u = x/an + bn

for all continuity points x for which u(x) is finite, then for ouch x

P(an(Xn)-bn)<-x)..  4) (u(x)) as n -
n

This then holds for all x if u is continuous (as is the case when for

example kn increases monotonically).

3. The normal case.

In this section the general results obtained above are applied to

normal sequences. Let {Xn } be a stationary normal sequence which for

convenience is assumed to be standardized to have zero means and unit

variances. We assume that its covariance function r = EX Xn I lI+n

satisfies

(3.1) r = O(n - )
n

for some constant P > 0 to be specified later. Write

6= suplrn n I n=supirmI

It is easily seen that since rn - 0 we must have 6 < 1, and that (3.1)

implies 6 n O(n-P). Further, let {k n } be an intermediate rank sequence

and define 8 = e({kn}) by

e, 8 - inf{6' ;kn O(n ).

II
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Clearly 0 < 6 < 1 and k n O(n foralI >0.

Now, for x real, suppose that un satisfies (2.2) (with u replaced

by x), i.e. suppose that

(3.2) 1 - C(u) = kn/n - x/-Fn/n + o(Vkn/n)

By making a first order expansion of 4 around the point bn, it is

easily seen that one such un is u x/a n+ b with

bn =- 1 (1-kn/n) , a =n'(b )/JFnnn n n n

Somewhat more generally, u = x/a' + b' for a',b' satisfying
n n n nn

a-1 a'-l , an(b'-bn)+O also satisfies (3.2). We require the following
nn n n n)-

two useful technical results. First, for {u } satisfying (3.2) we have

n
-ieUn/2

kn/n - 1 - (u) (21T) un e

and taking logarithms gives u ~ 2 log n/k so that

n4 n

' -u 4 knn 2(3.3) e n 4r(k A) log n/kn

In the following two lemmas we find conditions on p which ensure

that A(un) is satisfied.

Lemma 3.1. Suppose that 0 < 1 and that {rn } satisfies (3.1) for some
n

p > 0. Then

I..

,s
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n_ I n IP(X>Un l>U) - (1-(un))2 1 0 as n

kn i=1

Proof. As a special case of a result used by Berman (1964) and others,

we have that

fP(X1>Un , X1 .i>U) - (1-0(un)) 2j : Kjrije n

for some constant K (depending only on 6 but whose value may change from

line to line below). Hence

n rnI- Ipx>U x u (1-0(U)21
k l (Xl>U n , Xl,=>u1) -nln

n ~ n ]  -u n/(l+ I[ri1)
<5 K I' Iri le

n i~l

and we estimate the latter sum by splitting it into two parts: for

1 S j y and for y < j 5 [rvk], where y = [(n/kn) ] with
n n

0 < c < (1-6)/(1+6). By (3.3)

Y -u2 /(l+jrj) fk 21(1+6)

n 1 Irie n K -- -nJ (log K--)Y
n~ in i

+0 as n

by the choice of y.

Since 0 < 1 and 6 = O(n-P) by the assumoption on frn} we
n n

have that 6 u2 + 0 as u - , and hence (3.3) gives, for i y,

,In

.'
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e S e n e n

S K [ log n

n I n

Thus, (defining the sum to be zero for y 2 [1Fn]

, , u 1(1lrlr kn n
n Irile S K- log Ikn i~~ n- knn Ii

nVy l

k f/n l  P
n - log C -

n i=y+l

For the three separate cases p < 1, p = 1, and p > 1, the last sum is

bounded by a constant multiple of kn log , and 1 respectively.

Therefore in any case the expression on the right-hand side tends to zero

since p > 0, thus concluding the proof of the lemma. 0

To establish the latter part of A(u n) we shall further extend an

important method, due to Slepian, Berman, and Cram6r, from the extreme

value theory of normal processes. In addition to conditions on p, we

shall for convenience assume that k does not increase too slowly, or~n

more precisely that

(3.4) k n/(log n) 2/p cc as n D

.rn
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Lemma 3.2. Suppose that r nI satisfies (3.1) and (3.4) with

p > max(30/2 , 2(2 - 1/e)) and that {u } satisfiee (3.2). Then therei n

ei st sequences {kn } and (V } which aatisfy the requirements of A(un).
n n n

Proof. We first show that there exists a sequence {zn} with Vn - n
nn n

and ' = o(vlFk_ ) such thatn 

n 
n

(3.S) n aI(n, ) - 0 as n

n

First, by (3.4), a sequence {2..} can be chosen so that
n

1/f)kn=o(/Fkn) ,'< rk- but such that '' > (log n) I /  We shall impose an n n n n
slight further restriction on V later, but for the moment just assume

n
these properties. Then since 6n - Kn -  by (3.1),

u2 6  - K(log n)(log n)-1 = K, and hence by (3.3), for j z tn,

-u 21+6.) -u 2+u 261(1+6
(3.6) e n =e n n S K(kn/n)2 log n/kn

Now let B c a(In,.... In ,) and k 0 be fixed. Then B is a
n
n-k'

disjoint union of sets of the form n {I x}, where each x. is
i=l n,i 1

zero or one; and hence for any j, 1 5 j 5 n - '
n

B = BO{In,j - 0} u Bl{In,j z l}

where B0 and B are sets of the same general form as B, except that the

th factor in the intersections are missing. It is evident that
o¢j
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B= {(×1 . .. )E } , B i= {(X 1 ,. . . , X , + . . . X n -, ).E i} ,
n n

i 0,1

n-Z t  n-Z,'-1
for some sets BE R T 'BE R

Let R be the covariance matrix of the vector (X1 .... X Xn)
n

let R0 be the covariance matrix it would have if (X1 .... Xn-X' ) and
n

Xn k were independent, and define Rh = hR1 + (1-h)R 0. Without loss of

generality it may be assumed that R and hence Rh is positive definite,

and writing

u
n

F(h)=f...f f fhx n+k = _OD

where _X = (X1 .... X n-, ) and fh is the density function of a zero-mean
n

normal vector with covariance matrix Rh, we have that

(3.7) IP({X n+!u n}n) - P(X n+<u n)P(B)f = IF(l) - F(O)j

0 J IF'J

Proceeding as in Leadbetter, Lindgren, and Rootz6n (1978, pp. 46-47),

we obtain

,- u @2
- n  n fh

(3.8) F'(h) f f f a aj=l 'Re =.o -" iXn+Z

As above, {Y B} c {K* e- }{xJ s u l{* c ){X. > u n where, n 1 n

"4* = (xl,...xJ -
1 ' J+ 1 .... X n-k and performing the integrations

over x. and xn+k gives

'It
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u U 2

Un Un afh f ff
f... f ; xiYXn+ £ = ff.J fh(xj=xn+Zun)
i'eci0 x j =-° n+k = -  Y*CB 0

f..f fh~j =Xn+ x =u)

where fh(x. = Xn u) is the function of Y* which is obtained by

putting x.=u, n =un in f The last integral is easily seen to be

2-u /(] r r .1 )

bounded by Ke +ij , with K depending only on 6. Next, making

the change of variables yi = xi iX j , yj = -x. and writing

= l .... Yj-i ' Yj+l.....yn-' we have

n

u 2 -u u 2
O. n fh n n ff"". f f f ax. ax "f" f f f By Byn

*B1 x=u nx Z j n+" Y*CB yj=-0 Y -c1 j n Xn+Q= i* j Y+£ -

= -f...f gh(Y.=- u
n , Yn+=Un)

where gh is defined from (X1 . ... Xj , -X.,Xj 1 , .. n.k,, X n.) in the
n

same way as f is defined from (Xl,..., x n  , Xn). Agai, the
n -/(l lrn,_ 1),

modulus of the latter integral is seen to be bounded 
by Ke

and it follows that

Un  2 fh -u 2 /(l+Ir+_ .1)If... f f ;x ax Ken kj

f B x Xn kz -00

Inserting this into (3.7) and (3.8) gives

"NO
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IP({X n+ <u nnB)- P(X n+ u n)P(B)j < K n Irn+je /(+

Since the last expression is independent of the particular 2. and B

considered, we have that

22

n -u2 (1+6+)
ln K . e

ju2., j
n

Thus, by again using r = O(.-P) and (3.6), wehave

( (n, kn) K 1.n log n

(1 n -p2.

n fl n

For the three cases p <1, p = 1, and p >1, the last sum is bounded by

aconstant times nI ' , log n, and 2,I-p respectively. Thus, since
.4 n
i p > max(30/2,* 2(2- 1/0)), the right-hand side of (3.9) clearly tends to zero

i when p < 1. For p > 1 it is readily seen that 2.' may be redefined (by

i still tends to zero. Hence (3.5) follows.

•The proof that nk -2n +n 0 as n ofor the above choice of

n

' 2' is only notationally more complicated, and together with (3.5) this

I I

n
Fo thtrecss __<1,p__,_ndp__1_helatumibunedb

-- 1- -
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-n (n,k ') -~0 as n 

22

n

It is now easy to see in the same way that, for any sequence k withn

Z Z :5 v2. - , we have
n n n

n -6(n,£n) Z 0 as n ,
)=k n

n

and this proves the lemma. 0

It now follows at once that A(un), and hence the results of Theorems

2.4 and 2.5, hold for stationary normal sequences which satisfy the above

conditions. To avoid repetition we only state an analog of Theorem 2.5.

Theorem 3.3. Suppose that {X n } is a stationary normal sequence and {k n I

an intermediate rank sequence such that

r = 0(n) , some p > max(30/2 , 2(2 - 1/0))n

and suppose that in addition kn/(log n)2 / -0 C. Then

P(a (X (n)-b )<x) - 0(x) as n
nkn n

for all real x, where a and b are defined by 4(b n ) = 1 - k /n and
n n n  n

a =nV (b )/IFrkn n n

j 4 Finally, it should be remarked that the covariance condition of the

theorem does not seem to be optimal. Perhaps even a condition like

I'

.p ,
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k n
_a log n rjO

n i=l

or, translated into terms of (3.1), p > 6, may be sufficient. In fact,

we have been able to show that if X can be written as a moving average
n= C

of independent normal random variables Xn = n with cn 0(n

for some p > max(6, ), then the conclusion of Theorem 3.3 holds. In

particular, this provides a large class of examples of processes with

r = O(n- ),n

such that P(an(Xk -b)n x) - D(x) for any p > max(0, ).
n
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